3.626 \(\int \frac{x^2 (a+b x)^{3/2}}{\sqrt{c+d x}} \, dx\)

Optimal. Leaf size=254 \[ \frac{(a+b x)^{3/2} \sqrt{c+d x} \left (3 a^2 d^2+10 a b c d+35 b^2 c^2\right )}{96 b^2 d^3}-\frac{\sqrt{a+b x} \sqrt{c+d x} (b c-a d) \left (3 a^2 d^2+10 a b c d+35 b^2 c^2\right )}{64 b^2 d^4}+\frac{(b c-a d)^2 \left (3 a^2 d^2+10 a b c d+35 b^2 c^2\right ) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{64 b^{5/2} d^{9/2}}-\frac{(a+b x)^{5/2} \sqrt{c+d x} (3 a d+7 b c)}{24 b^2 d^2}+\frac{x (a+b x)^{5/2} \sqrt{c+d x}}{4 b d} \]

[Out]

-((b*c - a*d)*(35*b^2*c^2 + 10*a*b*c*d + 3*a^2*d^2)*Sqrt[a + b*x]*Sqrt[c + d*x])/(64*b^2*d^4) + ((35*b^2*c^2 +
 10*a*b*c*d + 3*a^2*d^2)*(a + b*x)^(3/2)*Sqrt[c + d*x])/(96*b^2*d^3) - ((7*b*c + 3*a*d)*(a + b*x)^(5/2)*Sqrt[c
 + d*x])/(24*b^2*d^2) + (x*(a + b*x)^(5/2)*Sqrt[c + d*x])/(4*b*d) + ((b*c - a*d)^2*(35*b^2*c^2 + 10*a*b*c*d +
3*a^2*d^2)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(64*b^(5/2)*d^(9/2))

________________________________________________________________________________________

Rubi [A]  time = 0.229475, antiderivative size = 254, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {90, 80, 50, 63, 217, 206} \[ \frac{(a+b x)^{3/2} \sqrt{c+d x} \left (3 a^2 d^2+10 a b c d+35 b^2 c^2\right )}{96 b^2 d^3}-\frac{\sqrt{a+b x} \sqrt{c+d x} (b c-a d) \left (3 a^2 d^2+10 a b c d+35 b^2 c^2\right )}{64 b^2 d^4}+\frac{(b c-a d)^2 \left (3 a^2 d^2+10 a b c d+35 b^2 c^2\right ) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{64 b^{5/2} d^{9/2}}-\frac{(a+b x)^{5/2} \sqrt{c+d x} (3 a d+7 b c)}{24 b^2 d^2}+\frac{x (a+b x)^{5/2} \sqrt{c+d x}}{4 b d} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(a + b*x)^(3/2))/Sqrt[c + d*x],x]

[Out]

-((b*c - a*d)*(35*b^2*c^2 + 10*a*b*c*d + 3*a^2*d^2)*Sqrt[a + b*x]*Sqrt[c + d*x])/(64*b^2*d^4) + ((35*b^2*c^2 +
 10*a*b*c*d + 3*a^2*d^2)*(a + b*x)^(3/2)*Sqrt[c + d*x])/(96*b^2*d^3) - ((7*b*c + 3*a*d)*(a + b*x)^(5/2)*Sqrt[c
 + d*x])/(24*b^2*d^2) + (x*(a + b*x)^(5/2)*Sqrt[c + d*x])/(4*b*d) + ((b*c - a*d)^2*(35*b^2*c^2 + 10*a*b*c*d +
3*a^2*d^2)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(64*b^(5/2)*d^(9/2))

Rule 90

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a + b*
x)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 3)), x] + Dist[1/(d*f*(n + p + 3)), Int[(c + d*x)^n*(e +
 f*x)^p*Simp[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(n + p + 4) - b*(d*e*(
n + 2) + c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^2 (a+b x)^{3/2}}{\sqrt{c+d x}} \, dx &=\frac{x (a+b x)^{5/2} \sqrt{c+d x}}{4 b d}+\frac{\int \frac{(a+b x)^{3/2} \left (-a c-\frac{1}{2} (7 b c+3 a d) x\right )}{\sqrt{c+d x}} \, dx}{4 b d}\\ &=-\frac{(7 b c+3 a d) (a+b x)^{5/2} \sqrt{c+d x}}{24 b^2 d^2}+\frac{x (a+b x)^{5/2} \sqrt{c+d x}}{4 b d}+\frac{\left (35 b^2 c^2+10 a b c d+3 a^2 d^2\right ) \int \frac{(a+b x)^{3/2}}{\sqrt{c+d x}} \, dx}{48 b^2 d^2}\\ &=\frac{\left (35 b^2 c^2+10 a b c d+3 a^2 d^2\right ) (a+b x)^{3/2} \sqrt{c+d x}}{96 b^2 d^3}-\frac{(7 b c+3 a d) (a+b x)^{5/2} \sqrt{c+d x}}{24 b^2 d^2}+\frac{x (a+b x)^{5/2} \sqrt{c+d x}}{4 b d}-\frac{\left ((b c-a d) \left (35 b^2 c^2+10 a b c d+3 a^2 d^2\right )\right ) \int \frac{\sqrt{a+b x}}{\sqrt{c+d x}} \, dx}{64 b^2 d^3}\\ &=-\frac{(b c-a d) \left (35 b^2 c^2+10 a b c d+3 a^2 d^2\right ) \sqrt{a+b x} \sqrt{c+d x}}{64 b^2 d^4}+\frac{\left (35 b^2 c^2+10 a b c d+3 a^2 d^2\right ) (a+b x)^{3/2} \sqrt{c+d x}}{96 b^2 d^3}-\frac{(7 b c+3 a d) (a+b x)^{5/2} \sqrt{c+d x}}{24 b^2 d^2}+\frac{x (a+b x)^{5/2} \sqrt{c+d x}}{4 b d}+\frac{\left ((b c-a d)^2 \left (35 b^2 c^2+10 a b c d+3 a^2 d^2\right )\right ) \int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx}{128 b^2 d^4}\\ &=-\frac{(b c-a d) \left (35 b^2 c^2+10 a b c d+3 a^2 d^2\right ) \sqrt{a+b x} \sqrt{c+d x}}{64 b^2 d^4}+\frac{\left (35 b^2 c^2+10 a b c d+3 a^2 d^2\right ) (a+b x)^{3/2} \sqrt{c+d x}}{96 b^2 d^3}-\frac{(7 b c+3 a d) (a+b x)^{5/2} \sqrt{c+d x}}{24 b^2 d^2}+\frac{x (a+b x)^{5/2} \sqrt{c+d x}}{4 b d}+\frac{\left ((b c-a d)^2 \left (35 b^2 c^2+10 a b c d+3 a^2 d^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x}\right )}{64 b^3 d^4}\\ &=-\frac{(b c-a d) \left (35 b^2 c^2+10 a b c d+3 a^2 d^2\right ) \sqrt{a+b x} \sqrt{c+d x}}{64 b^2 d^4}+\frac{\left (35 b^2 c^2+10 a b c d+3 a^2 d^2\right ) (a+b x)^{3/2} \sqrt{c+d x}}{96 b^2 d^3}-\frac{(7 b c+3 a d) (a+b x)^{5/2} \sqrt{c+d x}}{24 b^2 d^2}+\frac{x (a+b x)^{5/2} \sqrt{c+d x}}{4 b d}+\frac{\left ((b c-a d)^2 \left (35 b^2 c^2+10 a b c d+3 a^2 d^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )}{64 b^3 d^4}\\ &=-\frac{(b c-a d) \left (35 b^2 c^2+10 a b c d+3 a^2 d^2\right ) \sqrt{a+b x} \sqrt{c+d x}}{64 b^2 d^4}+\frac{\left (35 b^2 c^2+10 a b c d+3 a^2 d^2\right ) (a+b x)^{3/2} \sqrt{c+d x}}{96 b^2 d^3}-\frac{(7 b c+3 a d) (a+b x)^{5/2} \sqrt{c+d x}}{24 b^2 d^2}+\frac{x (a+b x)^{5/2} \sqrt{c+d x}}{4 b d}+\frac{(b c-a d)^2 \left (35 b^2 c^2+10 a b c d+3 a^2 d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{64 b^{5/2} d^{9/2}}\\ \end{align*}

Mathematica [A]  time = 0.549862, size = 215, normalized size = 0.85 \[ \frac{3 (b c-a d)^{5/2} \left (3 a^2 d^2+10 a b c d+35 b^2 c^2\right ) \sqrt{\frac{b (c+d x)}{b c-a d}} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b c-a d}}\right )-b \sqrt{d} \sqrt{a+b x} (c+d x) \left (3 a^2 b d^2 (5 c-2 d x)+9 a^3 d^3+a b^2 d \left (-145 c^2+92 c d x-72 d^2 x^2\right )+b^3 \left (-70 c^2 d x+105 c^3+56 c d^2 x^2-48 d^3 x^3\right )\right )}{192 b^3 d^{9/2} \sqrt{c+d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(a + b*x)^(3/2))/Sqrt[c + d*x],x]

[Out]

(-(b*Sqrt[d]*Sqrt[a + b*x]*(c + d*x)*(9*a^3*d^3 + 3*a^2*b*d^2*(5*c - 2*d*x) + a*b^2*d*(-145*c^2 + 92*c*d*x - 7
2*d^2*x^2) + b^3*(105*c^3 - 70*c^2*d*x + 56*c*d^2*x^2 - 48*d^3*x^3))) + 3*(b*c - a*d)^(5/2)*(35*b^2*c^2 + 10*a
*b*c*d + 3*a^2*d^2)*Sqrt[(b*(c + d*x))/(b*c - a*d)]*ArcSinh[(Sqrt[d]*Sqrt[a + b*x])/Sqrt[b*c - a*d]])/(192*b^3
*d^(9/2)*Sqrt[c + d*x])

________________________________________________________________________________________

Maple [B]  time = 0.019, size = 574, normalized size = 2.3 \begin{align*}{\frac{1}{384\,{b}^{2}{d}^{4}}\sqrt{bx+a}\sqrt{dx+c} \left ( 96\,{x}^{3}{b}^{3}{d}^{3}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+144\,{x}^{2}a{b}^{2}{d}^{3}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}-112\,{x}^{2}{b}^{3}c{d}^{2}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+9\,\ln \left ( 1/2\,{\frac{2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ){a}^{4}{d}^{4}+12\,\ln \left ( 1/2\,{\frac{2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ){a}^{3}bc{d}^{3}+54\,\ln \left ( 1/2\,{\frac{2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ){a}^{2}{b}^{2}{c}^{2}{d}^{2}-180\,\ln \left ( 1/2\,{\frac{2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ) a{b}^{3}{c}^{3}d+105\,\ln \left ( 1/2\,{\frac{2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ){b}^{4}{c}^{4}+12\,\sqrt{bd}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }x{a}^{2}b{d}^{3}-184\,\sqrt{bd}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }xa{b}^{2}c{d}^{2}+140\,\sqrt{bd}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }x{b}^{3}{c}^{2}d-18\,\sqrt{bd}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }{a}^{3}{d}^{3}-30\,\sqrt{bd}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }{a}^{2}bc{d}^{2}+290\,\sqrt{bd}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }a{b}^{2}{c}^{2}d-210\,\sqrt{bd}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }{b}^{3}{c}^{3} \right ){\frac{1}{\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }}}{\frac{1}{\sqrt{bd}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(b*x+a)^(3/2)/(d*x+c)^(1/2),x)

[Out]

1/384*(b*x+a)^(1/2)*(d*x+c)^(1/2)*(96*x^3*b^3*d^3*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+144*x^2*a*b^2*d^3*((b*x+
a)*(d*x+c))^(1/2)*(b*d)^(1/2)-112*x^2*b^3*c*d^2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+9*ln(1/2*(2*b*d*x+2*((b*x+
a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*a^4*d^4+12*ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)
^(1/2)+a*d+b*c)/(b*d)^(1/2))*a^3*b*c*d^3+54*ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*
d)^(1/2))*a^2*b^2*c^2*d^2-180*ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*a*b^
3*c^3*d+105*ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*b^4*c^4+12*(b*d)^(1/2)
*((b*x+a)*(d*x+c))^(1/2)*x*a^2*b*d^3-184*(b*d)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*x*a*b^2*c*d^2+140*(b*d)^(1/2)*((b
*x+a)*(d*x+c))^(1/2)*x*b^3*c^2*d-18*(b*d)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*a^3*d^3-30*(b*d)^(1/2)*((b*x+a)*(d*x+c
))^(1/2)*a^2*b*c*d^2+290*(b*d)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*a*b^2*c^2*d-210*(b*d)^(1/2)*((b*x+a)*(d*x+c))^(1/
2)*b^3*c^3)/b^2/d^4/((b*x+a)*(d*x+c))^(1/2)/(b*d)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(b*x+a)^(3/2)/(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 3.31748, size = 1226, normalized size = 4.83 \begin{align*} \left [\frac{3 \,{\left (35 \, b^{4} c^{4} - 60 \, a b^{3} c^{3} d + 18 \, a^{2} b^{2} c^{2} d^{2} + 4 \, a^{3} b c d^{3} + 3 \, a^{4} d^{4}\right )} \sqrt{b d} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \,{\left (2 \, b d x + b c + a d\right )} \sqrt{b d} \sqrt{b x + a} \sqrt{d x + c} + 8 \,{\left (b^{2} c d + a b d^{2}\right )} x\right ) + 4 \,{\left (48 \, b^{4} d^{4} x^{3} - 105 \, b^{4} c^{3} d + 145 \, a b^{3} c^{2} d^{2} - 15 \, a^{2} b^{2} c d^{3} - 9 \, a^{3} b d^{4} - 8 \,{\left (7 \, b^{4} c d^{3} - 9 \, a b^{3} d^{4}\right )} x^{2} + 2 \,{\left (35 \, b^{4} c^{2} d^{2} - 46 \, a b^{3} c d^{3} + 3 \, a^{2} b^{2} d^{4}\right )} x\right )} \sqrt{b x + a} \sqrt{d x + c}}{768 \, b^{3} d^{5}}, -\frac{3 \,{\left (35 \, b^{4} c^{4} - 60 \, a b^{3} c^{3} d + 18 \, a^{2} b^{2} c^{2} d^{2} + 4 \, a^{3} b c d^{3} + 3 \, a^{4} d^{4}\right )} \sqrt{-b d} \arctan \left (\frac{{\left (2 \, b d x + b c + a d\right )} \sqrt{-b d} \sqrt{b x + a} \sqrt{d x + c}}{2 \,{\left (b^{2} d^{2} x^{2} + a b c d +{\left (b^{2} c d + a b d^{2}\right )} x\right )}}\right ) - 2 \,{\left (48 \, b^{4} d^{4} x^{3} - 105 \, b^{4} c^{3} d + 145 \, a b^{3} c^{2} d^{2} - 15 \, a^{2} b^{2} c d^{3} - 9 \, a^{3} b d^{4} - 8 \,{\left (7 \, b^{4} c d^{3} - 9 \, a b^{3} d^{4}\right )} x^{2} + 2 \,{\left (35 \, b^{4} c^{2} d^{2} - 46 \, a b^{3} c d^{3} + 3 \, a^{2} b^{2} d^{4}\right )} x\right )} \sqrt{b x + a} \sqrt{d x + c}}{384 \, b^{3} d^{5}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(b*x+a)^(3/2)/(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/768*(3*(35*b^4*c^4 - 60*a*b^3*c^3*d + 18*a^2*b^2*c^2*d^2 + 4*a^3*b*c*d^3 + 3*a^4*d^4)*sqrt(b*d)*log(8*b^2*d
^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^
2*c*d + a*b*d^2)*x) + 4*(48*b^4*d^4*x^3 - 105*b^4*c^3*d + 145*a*b^3*c^2*d^2 - 15*a^2*b^2*c*d^3 - 9*a^3*b*d^4 -
 8*(7*b^4*c*d^3 - 9*a*b^3*d^4)*x^2 + 2*(35*b^4*c^2*d^2 - 46*a*b^3*c*d^3 + 3*a^2*b^2*d^4)*x)*sqrt(b*x + a)*sqrt
(d*x + c))/(b^3*d^5), -1/384*(3*(35*b^4*c^4 - 60*a*b^3*c^3*d + 18*a^2*b^2*c^2*d^2 + 4*a^3*b*c*d^3 + 3*a^4*d^4)
*sqrt(-b*d)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(-b*d)*sqrt(b*x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (
b^2*c*d + a*b*d^2)*x)) - 2*(48*b^4*d^4*x^3 - 105*b^4*c^3*d + 145*a*b^3*c^2*d^2 - 15*a^2*b^2*c*d^3 - 9*a^3*b*d^
4 - 8*(7*b^4*c*d^3 - 9*a*b^3*d^4)*x^2 + 2*(35*b^4*c^2*d^2 - 46*a*b^3*c*d^3 + 3*a^2*b^2*d^4)*x)*sqrt(b*x + a)*s
qrt(d*x + c))/(b^3*d^5)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(b*x+a)**(3/2)/(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.32684, size = 393, normalized size = 1.55 \begin{align*} \frac{{\left (\sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}{\left (2 \,{\left (b x + a\right )}{\left (4 \,{\left (b x + a\right )}{\left (\frac{6 \,{\left (b x + a\right )}}{b^{3} d} - \frac{7 \, b^{7} c d^{5} + 9 \, a b^{6} d^{6}}{b^{9} d^{7}}\right )} + \frac{35 \, b^{8} c^{2} d^{4} + 10 \, a b^{7} c d^{5} + 3 \, a^{2} b^{6} d^{6}}{b^{9} d^{7}}\right )} - \frac{3 \,{\left (35 \, b^{9} c^{3} d^{3} - 25 \, a b^{8} c^{2} d^{4} - 7 \, a^{2} b^{7} c d^{5} - 3 \, a^{3} b^{6} d^{6}\right )}}{b^{9} d^{7}}\right )} \sqrt{b x + a} - \frac{3 \,{\left (35 \, b^{4} c^{4} - 60 \, a b^{3} c^{3} d + 18 \, a^{2} b^{2} c^{2} d^{2} + 4 \, a^{3} b c d^{3} + 3 \, a^{4} d^{4}\right )} \log \left ({\left | -\sqrt{b d} \sqrt{b x + a} + \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \right |}\right )}{\sqrt{b d} b^{2} d^{4}}\right )} b}{192 \,{\left | b \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(b*x+a)^(3/2)/(d*x+c)^(1/2),x, algorithm="giac")

[Out]

1/192*(sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*(2*(b*x + a)*(4*(b*x + a)*(6*(b*x + a)/(b^3*d) - (7*b^7*c*d^5 + 9*a
*b^6*d^6)/(b^9*d^7)) + (35*b^8*c^2*d^4 + 10*a*b^7*c*d^5 + 3*a^2*b^6*d^6)/(b^9*d^7)) - 3*(35*b^9*c^3*d^3 - 25*a
*b^8*c^2*d^4 - 7*a^2*b^7*c*d^5 - 3*a^3*b^6*d^6)/(b^9*d^7))*sqrt(b*x + a) - 3*(35*b^4*c^4 - 60*a*b^3*c^3*d + 18
*a^2*b^2*c^2*d^2 + 4*a^3*b*c*d^3 + 3*a^4*d^4)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d -
a*b*d)))/(sqrt(b*d)*b^2*d^4))*b/abs(b)